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Abstract 

Calculations of electron diffraction intensities in trans- 
mission electron microscopy commonly assume a model 
representing surfaces and interfaces in crystals as flat 
boundaries (fiat-boundary model, FBM). It is shown that 
the independent-atom model (IAM) representing the 
crystal potential as a superposition of spherical atomic 
potentials leads to improved boundary conditions. 
Intensities calculated from the two models at large 
deviation from the Bragg peak in weak reflections (e.g. 
200 in InGaAs) differ significantly. Results from both 
types of calculation are compared with an experimental 
diffraction pattern recorded using energy-filtered large- 
angle convergent-beam electron diffraction from an 
Ino.53Ga0.47/InP bicrystal. It is shown that calculations 
using the IAM give a better agreement with experiment. 

1. Introduction 

Calculations of electron diffraction intensities from thin 
crystals in transmission electron microscopy (TEM) 
usually assume a sharp cut-off of the crystal potential 
at surfaces and sharp transitions of the potential at 
interfaces inside the sample. This leads to a convenient 

* Present address: MRC Laboratory of Molecular Biology, Hills 
Road, Cambridge CB2 2QH, England. 

set of boundary conditions that can be used in dynamical 
theory (see Peng & Whelan, 1990a, for a recent review). 
The effects of contamination and the detailed three- 
dimensional atomic structure of surfaces and interfaces 
are generally ignored owing to their small contribution to 
the total volume of the crystal. Earlier attempts at 
understanding the effect of boundary conditions in 
multislice calculations have been made for forbidden 
reflections (Stobbs, Boothroyd & Stobbs, 1989; Gipson, 
Lanzerotti & Elser, 1989). Here, we report a different 
representation of the crystal potential which pays more 
attention to the spatial variation of the potential at the 
atomic level at interfaces and surfaces. This leads to a 
significantly improved agreement between calculated 
and observed intensities in cases where the reflection 
under consideration is weak, such as the 200 reflection 
from InGaAs. Contamination is still assumed to play a 
minor role and is ignored in the calculations. 

2. The crystal potential at surfaces and interfaces 

In an infinite perfect crystal, the potential can be 
represented by a Fourier series (Bethe, 1928). Disconti- 
nuities at surfaces and interfaces perturb the potential 
inside the bulk. However, it is usually assumed that these 
perturbations are cont'med to a small volume and that the 
potential in the bulk is unchanged. Thus, the situation can 
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be simplified by setting the potential inside the bulk to 
that of an infinite crystal and to zero outside the crystal, 
such that the potential in any part of the crystal may be 
represented as a Fourier series. This treatment results in 
two-dimensional flat boundaries separating different 
parts of the sample, an approximation that will be 
referred to as the flat-boundary model (FBM). For the 
potential VFa M in one part of the sample (e.g. in one layer 
if the sample consists of several flat layers), 

Here, r is the real-space coordinate, S(r) is a shape 
function, gs is the Fourier coefficient for reflection g and 
the sum over g includes all reflections. In semiconduc- 
tors, the crystal potential derived from tabulated atomic 
form factors (Doyle & Turner, 1968) is widely used and 
experimentally observed deviations due to bonding are 
small (e.g. Zuo, Spence & O'Keeffe, 1988). Thus, I,'g can 
be calculated from the sum of (relativistic) form factorsfi 
for atoms i in one unit cell: 

I,'g = [h2/2~rme~] ~ f i (0 )exp( -2J r ig ,  ri) 
u n i t  c e l l  

x exp( -Big  2/4) (2) 

where h is Planck's constant, ~2 is the unit-cell volume, 
m is the relativistic mass of the electron, e is the 
elementary charge, 0 is the scattering angle, 
B i = 87/'2(A~) is the Debye-Waller  factor for atom i 
with mean square displacement (A~) and r i is the 
coordinate for atom i. For a parallel-sided crystal slab 
infinite in two dimensions (taken as x and y) and of 
thickness T along z, S(r) can be defined as 

1 - T / 2  <_ z <_ T /2  
S(r) = 0 otherwise. 

(3) 

Then, the Fourier transform of (1) is 

with the shape transform 

S(q) = 8(q~,) sinOrTqz)/~qzC, (5) 

where q is a reciprocal-space coordinate, c is the 
magnitude of the unit-cell vector along z and • denotes 
a convolution. Equation (4) contains a sum of 8 functions 
at the reciprocal-lattice points weighted by the Fourier 
coefficients I,'g of the potential. The convolution of the 8 
functions with S(q) causes the reciprocal-lattice points to 
be elongated in the z direction. 

The simplification made in (1) is illustrated in Fig. 
1 (a) using the crystal surface as an example. As a result 
of the sharp transition from the bulk potential to vacuum, 
part of the crystal potential produced by individual atoms 

inside the crystal is omitted and part of the potential 
produced by atoms that would be included in an infinite 
crystal is added to the potential of the finite crystal. 

The independent-atom model (IAM) normally used in 
gas-phase electron diffraction (e.g. Hargittai, 1988) 
approximates the total crystal potential by the super- 
position of neutral spherical-atom potentials, thereby 
neglecting charge redistribution due to chemical bond- 
ing. A similar formulation has been used for the study of 
imperfect crystals and is called the rigid-ion approxima- 
tion (e.g. Anstis & Cockayne, 1979). According to the 
IAM, the potential near a boundary deviates from that of 
the infinite crystal. This is illustrated again for the crystal 
surface in Fig. 1 (b). To represent this situation, we write 
for the potential VIA u in a homogeneous region of the 
sample (e.g. one layer of a multilayer sample) 

ViAM(r) = Vcen(r) . [S(r)~3(r  -- R)] . (6) 

R is a lattice vector and the infinite sum over R is 
restricted by the shape function S(r). Vceii(r) is the sum of 
atomic potentials Vi(r) over one unit cell defined as 

V~,n(r)= ~ Vi(r). (7) 
u n i t  c e l l  

Thus, we have a crystal lattice represented by a sum of 3 
functions in (6) and a unit cell placed at each lattice point 
by means of a convolution. This treatment assumes the 
sample is an integral number of unit cells thick. It is 
easily extended to deal with half unit cells by redefinition 
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Fig. 1. Two different models for the crystal surface. Atoms are 

represented as dots with a circle to indicate an extended atomic 
potential. (a) A flat crystal surface is assumed with a boundary line 
marking a sharp cut through the atomic potential. The dashed lines 
indicate parts of the potential lying outside this boundary. Those parts 
are assumed to be zero according to the FBM. Thus, for some atoms 
inside the boundary a part of the potential would be omitted and some 
other parts of the potential of atoms outside the boundary would be 
included in the crystal. (b) the IAM suggests a different situation in 
which only complete atoms are allowed. This means that the 
complete potential of atoms inside the boundary is included in the 
crystal structure and there is no atom outside the boundary that 
partially contributes to the total potential. 
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of the cell. In (6), contrary to (1), S(r) does not truncate 
the potential of individual atoms inside the crystal. For 
simplicity we have assumed in (6) a crystal with a 
thickness T equal to an odd number N of unit cells, such 
that the middle of the lattice coincides with a lattice point 
which we take to be the origin. Then T = Nc and the 
Fourier transform of (6) is 

1 
Analogous to (2), 

gcell(q) - -  (h2/2rcmex2) ~7, f.(O) 
i ~ u n i t  c e l l  

x exp ( -2n ' i q ,  r i )exp(-Biq2/4) .  (9) 

Thus, 

V~,(g) = Vg. (10) 

For a plate-like crystal with S(r) defined in (3), the 
Fourier transform (8) becomes 

VIAM(q) - "  Vcen(q)'}~ 8(qxy - gxy) 
g 

x sin[rr(q z - gz)NC]/rt(qz - gz)C 

= [sin(rrq~Nc)/sin(rrqzc)] 

X ~ Vcell(gxy 4- qz)S(qxy -- gxy), (11) 
gxy 

where the sum over gz in the first line of (11) has been 
replaced by the sine term in the second line. This 
derivation is expanded in the Appendix. We may now 
compare the two transforms (4) and (8). For a wave- 
vector transfer q = g (g exactly excited), the two 
potentials VVBM and V~A M are the same. We may see 
this by writing the difference of the two transforms (4) 
and (8) as 

AV(q) = y'~AVg(q)S(q - g) ( 1 2 )  

g 

AVg(q) = Vce.(q)-  V s. (13) 

with 

For a plate-like crystal of thickness T - -Nc,  the shape 
transform S ( q - g ) = 0  if q - g = g ' ,  where g' is 
another reciprocal-lattice vector [see (5)] and the sum 
in (12) reduces to one term whose coefficient AVg is zero 
according to (10), making the two Fourier transforms 
coincide. Hence, if we consider only one strongly excited 
beam and the transmitted beam (two-beam approxima- 
tion), we expect the dynamical scattering amplitudes 
according to the two models to be the same. 

If a reflection is only weakly excited, we write for the 
wave-transfer vector q = g 4- s, where s is the deviation 
parameter. For a plate-like crystal, s is parallel to the 
bottom surface normal n which points away from the 

crystal and, therefore, s = sn. We use the kinematical 
approximation and write, for the scattered amplitude 
q)g,FBM according to the FBM, 

(14) ~Os.FBM(S ) = ~ Fg sin[rrT(g z + s)]/rr(g~ + s)c 
gz 

with 

F 8 = (2rrmeI2/h2)Vg, (15) 

the structure factor for reflection g. The sum over gz in 
(14) runs over all reflections lying in the same reciprocal- 
lattice rod as g and thus may include higher-order Laue- 
zone (HOLZ) reflections. In the IAM, (14) becomes 

qgg , IAM(S ) = F(g + s) sin(rrTs)/sin(Trcs) (16) 

with T = Nc and 

F(g + s) = (2rrmeI'2/h2)V~ll(g + s). (17) 

F(g + s) differs from the structure factor Fg only in that 
it describes the scattering of one unit cell for a wave- 
transfer vector g 4 - s  rather than g. The term 
sin(rrTs)/sinffrcs) in (16) peaks at HOLZ reflections 
similar to the sum in (14), i.e. when s = gz. Hence, the 
amplitude (16) includes all HOLZ reflections. 
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Fig. 2. Plots of (a) phase difference and (b) modulus ratio of scattered 
amplitudes for an I%.53Ga0.47As and an InP crystal calculated using 
the IAM [equation (16)1 and the FBM [equation (14)1. Phase 
difference and modulus ratio do not depend on the thickness of the 
sample. As can be seen, the two models give similar results for InP 
but deviate significantly for I%.53Gao.47As. 
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The phase difference between amplitudes calculated 
using the two boundary models is shown in Fig. 2 for a 
200 reflection in InP and Ino53Gao47As, together with 
their modulus ratio for 0 < s < 0.02 A -~. It can be seen 
that the two models deviate significantly in the case of 
Ino.53Gao.47As. The 200 reflection in Ino.saGao.47As is a 
factor of six weaker than in InP and small contributions 
from the changed potential at the surfaces have a large 
effect on the total scattering phase [Fig. 2(a)] and 
magnitude [Fig. 2(b)]. This is not the case for InP as can 
be seen in Fig. 2 from the small differences between the 
two models in phase and modulus. It is important to note 
here that the changes displayed in Fig. 2 do not depend 
on the total thickness of the crystal. 

3. Exper imenta l  

To determine which of the two models described in the 
previous section gives a better representation of the true 
crystal potential, we should compare observed diffraction 
intensities with calculations using the two models. A 
method particularly suitable for recording diffraction 
patterns over a range of deviation parameters s is 
the large-angle convergent-beam electron diffraction 
(LACBED) technique (Tanaka, Saito, Ueno & Harada, 
1980; Vincent, 1989). In convergent-beam electron 
diffraction (CBED), a convergent beam is incident on 
the sample. The diffraction pattern then consists of a 
number of displaced discs for each reflection visible in 
the back focal plane of the objective lens. If overlap of 
the discs is to be avoided, the convergence angle is 
restricted to the Bragg angle of the first-order reflection. 
However, by moving the sample away from the beam 
cross over as in LACBED, a diffraction pattern is 
generated in the image plane and the selected-area 
diffraction (SAD) aperture can be used to select one 
reflection. This allows much larger convergence angles 
(typically 6 ° is used). More importantly, the SAD 
aperture acts as an angular filter and thereby removes 
thermal diffuse scattering (TDS) to a large extent 
(Jordan, Rossouw & Vincent, 1991). Thus, even very 
weak diffraction intensities at large deviation parameters 
may be recorded with high accuracy. 

Fig. 3 shows an example of a LACBED pattern. The 
disc shows detail up to very large deviation s. The pattern 
was obtained from a parallel-sided single-crystal slab 
with a thin buried layer in plan view. The modulation of 
the fringe intensity visible in the pattern is sensitive to the 
thin layer. Quantitative analysis yields thickness and 
composition of the thin layer to sub-monolayer accuracy 
(Grigorieff et al., 1993). This type of work relies 
critically on accurate calculation of diffraction intensities 
as part of a curve-fitting procedure. Therefore, correct 
boundary conditions are of prime importance. 

To test the two models it would, in principle, be 
possible to record a LACBED pattern from a single- 
crystal slab and compare the intensity envelope of the 

fringe maxima with calculated envelopes. For a parallel- 
sided slab, the envelope is a monotonically decreasing 
function for increasing deviation s. The two models 
predict different slopes for this envelope such that for 
increasing s intensity differences become larger [see Fig. 
2(b)]. Hence, to detect differences in the slope, one 
would have to compare the intensity of fringes over a 
wide range of deviation parameters, which could lead to 
spurious results. For instance, the slope of the experi- 
mental pattern could be affected by the response function 
of the detector being not exactly linear. Another example 
is the averaging of LACBED contrast over a range of 
thicknesses due to rough sample surfaces. The effect of 
averaging would increase with deviation s thereby 
altering the slope of the fringe envelope. Although the 
surfaces can be expected to be very smooth (see below), 
it is more reliable to consider a modulated intensity 
envelope where the calculated intensity ratio of adjacent 
fringes will depend on the model. A suitable structure 
was found to be an Ino.53Gao.47As/InP bicrystal with 
surface normal (001), grown by metal-organic vapour- 
phase epitaxy (MOVPE) and a thickness ratio of the 
layers of 1:2. To ensure sufficient stability of the sample, 
the total thickness was chosen to be 1800A. A cross 
section of the structure is schematically shown in Fig. 4. 
In previous work (Jordan, Cherns, Hockly & Spurdens, 
1989), it was demonstrated that the MOVPE growth 
method used here produces interfaces and surfaces of 

' i 
I I " "  

-0.01 0 0 .01  

s (A -1) 

Fig. 3. A LACBED pattern in the 200 reflection from a 32,~ 
Ino.53Gao.47As layer clad between 1500~ of InP. Fringes are visible 
up to large values of the deviation parameter s. 
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near atomic smoothness. The In0.53Ga0.47As/InP bicrystal 
examined here was grown on an InP wafer and 
subsequently removed from the wafer using very 
selective etches (a mixture of H2SOa:H202:H20 = 1:8:1 
for Ino.53Gao.47As and HCI for InP). This meant large 
parallel-sided crystal slabs, having typically an area of 
1 mm 2, could be prepared without disrupting the inter- 
face or the surface smoothness. Thus, the sample quality 
was nearly ideal, allowing detailed comparison of 
experiment with theory. 

A LACBED pattern in the 200 reflection was recorded 
on a 1024 x 1024 CCD array using a Gatan GIF imaging 
parallel electron energy-loss spectrometer attached to a 
Hitachi HF2000 field emission gun electron miscroscope 
running at 200keV. A 10eV energy window centred 
around the zero-loss peak in the energy-loss spectrum 
enabled filtering of plasmon inelastic scattering from the 
LACBED pattern. Diffuse background left in the pattern 
was measured by displacing the SAD aperture slightly to 
exclude elastic scattering. The pattern was then trans- 
ferred to a VAX workstation for further processing and 
the diffuse background was subtracted from the diffrac- 
tion intensity. Thus, the pattern was virtually free of 
inelastic scattering and ready for comparison with results 
from the two models. 

The intensities of fringe maxima were measured using 
data obtained by averaging ten pixels along each fringe 

3 7,L;,L;', ~ 

Fig. 4. Schematic cross section of the Ino.saGao.47As/InP bicrystal grown 
by MOVPE on an InP wafer and thinned with selective etches 
(H2SO4:H202:H20 = 1:8:1 for Ino.53Gao.47As and HCI for InP). 
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Fig. 5. Rocking curves calculated for the IAM using kinematical theory 
and for the FBM using both kinematical and dynamical theory based 
on Bloch waves including 21 beams and absorption due to TDS. The 
curves are rescaled and displaced horizontally for comparison. 
Differences for the FBM between the kinematical and dynamical 
calculations are negligible compared with differences between the 
kinematical calculations for the FBM and the IAM. 

and avoiding perturbations by non-systematic reflections. 
Simulations based on the kinematical theory of electron 
diffraction used atomic form factors listed by Doyle & 
Turner (1968) and Debye-Waller factors at 300K given 
by Reid (1983). To ensure kinematical theory is 
applicable and dynamical effects from systematic reflec- 
tions and absorption due to TDS are not important, a 
third simulation based on Bloch-wave theory using an 
Einstein model for the TDS absorptive potential (Hall & 
Hirsch, 1965) is displayed in Fig. 5, together with the 
kinematical calculations. For the boundary conditions, 
the FBM was assumed. As can be seen, the differences 
between the dynamical and the kinematical calculations 
using the FBM are negligible compared with differences 
between calculations using the FBM and the IAM. 

4. Results 

A section of the experimental 200 LACBED pattern from 
the bicrystal is displayed in Fig. 6(b) together with 
simulations for each boundary model in Figs. 6(a) and 
(c). A sequence of alternating strong and weak fringes 
can be seen in all three patterns. Other simulations not 
presented here showed that, if the layer thickness ratio of 
1:2 is not strictly obeyed, the modulation dies away at a 
certain deviation s and reappears as s increases. This 
makes it possible to measure the exact thickness ratio of 
the sample from the experimental pattern. The simula- 
tions in Fig. 6 represent best fits to the experimental 
pattern, and the thickness ratio was found to be within 
5% of the target ratio. It is important to note that 
simulations based on the IAM were sensitive to the layer 
order and the definition of the unit-cell origin. A different 
layer order or unit-cell origin changes the stacking 
sequence of group Ill and group V layers and gives the 
sample a different structure. The structure remains the 
same, however, if the sample is viewed from the opposite 
side and there are no changes to the kinematical 
calculations. A good fit was only obtained with the 
Ino.53Ga0.47As layer at the top as shown in Fig. 4 and with 
the group [ ]  atoms at the origin of the unit cell and the 
group V atoms at fractional coordinates (~, ¼,¼). 

Before considering intensities, we may observe that 
the fringe spacing in all three patterns is not constant. 
The fringes form pairs of two closer fringes separated 
from the next pair by a larger gap. This is most visible in 
Fig. 6(c), where paired fringes are indicated, and less 
apparent in Fig. 6(a). The experimental pattern in Fig. 
6(b) shows clear evidence of pairing which suggests 
better agreement with Fig. 6(c) in support of the IAM. 

The intensity ratios of adjacent fringe maxima in the 
experimental and simulated patterns are compared for the 
first 14 fringes in Table 1. Data from the last two fringes 
in Fig. 6(b) were considered unreliable due to the weak 
intensity of the fringes, and it was not included for 
comparison. For most ratios in Table 1, the calculation 
for the IAM agrees significantly better with the 
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experiment than that for the FBM. A X 2 tes t  was 
performed for each model using the data in Table 1. For 
the IAM, this gave a value five times lower than for the 
FBM, clearly indicating better agreement for the IAM. 

5. D i s c u s s i o n  

It is well known from reflection high-energy electron 
diffraction (RHEED), low-energy electron diffraction 
(LEED) and scanning tunnelling microscopy (STM) 
studies of clean crystal surfaces that the crystal surface is 
not flat [see Peng & Whelan (1990b) for a dynamical 
treatment of RHEED]. However, the sensitivity of 
diffraction intensities to details of the structure at 
surfaces and interfaces in TEM has not been reported 
before. The simulations presented in Fig. 6 and Table 1 
suggest that the diffraction intensity from a thin crystal 
depends on small differences in the crystal potential at 

boundaries if  a weak reflection at large deviation s from 
the Bragg peak is considered. 

An alternative interpretation of the differences be- 
tween the FBM and the IAM has been suggested by 
Preston (1989), which is based on the observation that 
there is an additional phase change between monolayers 
of anions and cations within a unit cell when the 
deviation parameter s is altered. This phase difference is 
neglected in calculations using the fixed structure factors 
Fg [(14)], which are independent of s. This explanation 
leads to the same amplitude and phase changes as 
described in §2. However, the interpretation is misleading 
because it renders the changes in Fig. 2 as an effect that 
occurs in the bulk of the crystal. This is not the case 
because, as explained in §2, the bulk potential is the same 
for the FBM and the IAM and, therefore, cannot cause 
the differences shown in Fig. 2. 

Both models presented in §2 ignore formation of two- 
dimensional superlattices at clean crystal surfaces (sur- 

Fr inge  
N u m b e r  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Paired f r inges  

I I I I I I I I I ---  

0 .011  0 .Ol  3 0 . 0 1 5  0 . 0 1 7  0 . 0 1 9  0 .021  0 . 0 2 3  0 . 0 2 5  0 . 0 2 7  

Devia t ion  parameter  s ( , ~ -  1) 

Fig. 6. Simulated and experimental 200 LACBED patterns. In (a) the FBM was used to calculate the best fit to the experimental pattern in (b). (c) 
shows the same calculation using the IAM. In (c), fringes are not equidistant but form pairs of two closer fringes separated from the next pair by a 
larger gap. The fringes are indicated in the region where pairing is most visible. The pairing can also be seen in the simulation in (a) but to a 
smaller extent. The experimental pattern in (b) shows clear evidence of pairing which suggests better agreement with the simulation in (c) 
according to the IAM. 
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Table 1. Observed and calculated intensity ratios for  
adjacent fr inge maxima 

The fr inges are indica ted  in the first  co lumn with numbers  accord ing  to 
Fig.  6. The second  and third co lumns  g ive  obse rved  rat ios Rn.o~ ~ and 
standard deviations trn obtained from intensities and standard deviations 
of ten pixels measured along each fringe, respectively. The calculated 
ratios R~.FnM and R~,tA M for the FBM and the IAM are listed in columns 
4 and 5 together with their deviations from the observed ratios. For 
most ratios, the deviation for the IAM is significantly smaller than 
for the FBM. Each model was tested using the X 2 test with 
X 2 = ~'~n(gn,obs --Rn,sim)2#r2n and values are given at the bottom of 
the table. The X 2 value for the IAM is smaller by a factor of five giving 
clear  ev idence  that the I A M  fits the expe r imen t  better.  

Fringe Deviation Deviation 
no. Observed ~ FBM (%) IAM (%) 
1/2 0.676 0.080 0.803 18.8 0.677 0.2 
2/3 1.705 0.145 1.602 6.0 1.793 5.2 
3/4 0.708 0.052 0.791 ! 1.7 0.703 0.7 
4/5 1.628 0.106 1.541 5.3 1.657 1.8 
5/6 0.725 0.058 0.805 10.9 0.737 1.6 
6/7 1.579 0.186 1.461 7.5 1.534 2.8 
7/8 0.816 0.094 0.837 2.5 0.791 3.1 
8/9 1.488 0.198 1.374 7.7 1.403 5.7 
9/10 0.847 0.130 0.881 4.0 0.863 1.9 
10/11 1.316 0.157 1.282 2.5 1.270 3.5 
11/12 0.927 0.095 0.935 0.8 0.926 0.1 
12/13 1.383 0.189 1.193 13.7 1.176 15.0 
13/14 1.013 0.138 0.998 1.5 0.995 1.8 

X2-BM = 10.2 X~BM = 2.1 

face reconstruction) as shown by Wassermeier et al. 
(1992), Chambers (1992), LaFemina (1992) and Li & 
Tong (1993) in the case of GaAs. Also, contamination on 
the surface during sample preparation and handling has 
been neglected. Small shifts of atom positions at the 
surface due to reconstruction may change diffraction 
contrast depending on the magnitude and direction of 
shift. It has been suggested, however, that absorption of 
atoms on crystal surfaces is likely to reverse reconstruc- 
tion by dangling-bond saturation (Newstead et al., 1993; 
LaFemina, 1992). Thus, it is probable that the position of 
atoms at the crystal surface is coherent with the bulk 
structure and diffraction contrast is not changed. 

The effect of contamination on image contrast was 
discussed by Metherell (1967). He assumed an amor- 
phous layer at the entrance surface of the crystal and 
concluded that the angular distribution of the beam 
would be widened by the diffuse scattering of the surface 
layer, thereby reducing the contrast in images. In our 
case, we look at a LACBED pattern, which is a 
diffraction pattern. A change in the angular distribution 
of the beam would only change the angular range visible 
in the pattern while intensities would remain unchanged. 
However, diffuse scattering by an amorphous layer at the 
exit surface of the crystal would, to some extent, average 
intensities of beams travelling in different directions, and 
hence contrast in the LACBED pattern would be 
reduced. It is not known whether there is a reduction 
of diffraction contrast due to contamination in patterns 
shown in ~4, but the experimental pattern displays 
contrast that is stronger (cf. intensity ratios in Table 1) 

than that predicted by the FBM and is, therefore, in 
closer agreement with the IAM. Hence, the averaging 
effect must be small. Correction of experimental 
intensities should cause worse agreement with calcula- 
tions based on the FBM and better agreement with the 
IAM. 

6. Concluding remarks 

Kinematical calculations based on both the flat-boundary 
model and the independent-atom model have been 
compared with experimental observations. The two 
models show differing diffraction amplitudes and phases 
in case of weak low-order reflections (e.g. 200 in 
InGaAs) which are greater at large deviation from the 
Bragg peak and negligible at small deviation where 
scattering is dynamical. An energy-filtered large-angle 
convergent-beam electron diffraction pattern in the 200 
reflection from an Ino.53Gao.47As/InP bicrystal was 
recorded under kinematical conditions and compared 
with simulations using the two models. A comparison of 
fringe position and a quantitative analysis of intensities in 
the diffraction pattern showed the simulation using the 
IAM agrees better with experiment, suggesting that this 
model represents the true crystal potential at surfaces and 
interfaces more accurately. 

This work would not have been possible without the 
help of BT Laboratories who provided financial support 
and the sample grown by S. D. Perrin and P. B. Webb. 
The authors are grateful to R. Vincent for his constant 
support throughout the project and D. M. Bird, R. D. 
Grigorieff, M. J. Whelan and W. M. Stobbs for helpful 
discussions and comments on the theory presented here. 

APPENDIX 
Derivation of equation (11) 

We consider a sum of N 3 functions, N odd 

N - I  

f ( z )  = ~ 6{z + [ ( N  - 1 ) / 2 ] c -  nc}, (18) 
n = 0  

which has the Fourier transform 

N - I  

f (qz) = exp[-rriqz(N - 1)c] ~ exp(Zn'iqznc ) 
n = 0  

exp(2rr iqgVc)-  1 
= exp[-:rriqz(N - 1)c] 

exp(2rr iq~c)-  1 

= sin(n'q~Nc)/sin(zrqzC ). (19) 

On the other hand, we may write (18) as an infinite sum 
of 3 functions limited by a slit function S(z) of width Nc 
and the origin in the middle: 

oo 

f ( z )  = S(z) ~ 8(z - nc). (20) 
n =  --(X) 
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The Fourier transform is then given as 

f (qz) = S(qz) * ~ exp(2rriqznc) 
n 

= [sin(ZrqzNc)/rrqz] * c-I E 3(qz - gz) 
gz 

= ~ sin[rr(q z - gz)Nc]/Jr(q z - gz)c. 
gz 

(21) 

Equation (2 l) is identical with (19) since (18) equals (20) 
and hence 

sin[n'(q z - gz)Nc] sin(n'q~,Nc) (22) 
-~-(-~-g-~ - sin(rrqzc)" 

gz 
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Abstract 

Based on the statistical theory of X-ray dynamical 
diffraction for thin films, the mosaicity of three types of 
semiconductor epitaxic layers has been investigated by 
analyzing their rocking curves by the X-ray double- 
crystal diffraction method. It is shown that the statistical 
theory can provide quantitative information on the 
mosaicity of the epitaxic layers such as the mean size 
and the mean disorientation of mosaic blocks in the 
layers. Some misunderstandings in interpreting experi- 
mental data are cleared up by taking into account the 
effect of diffuse scattering. It is emphasized that attempts 
to obtain structural parameters of specimens from their 
rocking curves by means of the Takagi-Taupin equations 
for coherent fields only are not strictly correct since 
diffuse scattering causes additional changes in the tails of 
the rocking curves. 

© 1995 International Union of  Crystallography 
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I. Introduction 

As is well known, X-ray double-crystal diffraction 
combined with computer simulations has been accepted 
as a nondestructive and sensitive method in the 
investigation of the structure of semiconducting epitaxic 
multilayers. Structural parameters, such as the period, 
thickness, composition, lattice mismatch and perfection 
of the epilayers, can be obtained by analyzing rocking 
curves (RCs). With the recent development of semi- 
conductor techniques, device structures are becoming 
smaller and smaller. Therefore, it is important to 
characterize microdefects inside epitaxic layers and the 
state of interfaces because they influence the physical 
properties of materials and the quality of devices. The 
parameters describing the microdefects can be obtained 
quantitatively from X-ray diffuse scattering which has a 
contribution on the tails of the RCs. The key point is to 
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